matscipy.calculators.ewald.calculator

Pair potential + Ewald summation

Classes

Ewald()

Ewal summation calculator.

EwaldShortRange(alpha, cutoff)

Short range term of Ewald summation.

class matscipy.calculators.ewald.calculator.EwaldShortRange(alpha, cutoff)

Bases: CutoffInteraction

Short range term of Ewald summation.

Attributes:
cutoff

Physical cutoff distance for pair interaction.

Methods

__call__(r, qi, qj)

Compute interaction energy.

derivative([n])

Return specified derivative.

first_derivative(r, qi, qj)

Compute derivative w/r to distance.

get_cutoff()

Get cutoff.

second_derivative(r, qi, qj)

Compute second derivative w/r to distance.

__init__(alpha, cutoff)

Initialize with cutoff.

first_derivative(r, qi, qj)

Compute derivative w/r to distance.

second_derivative(r, qi, qj)

Compute second derivative w/r to distance.

property cutoff

Physical cutoff distance for pair interaction.

derivative(n=1)

Return specified derivative.

get_cutoff()

Get cutoff. Deprecated.

class matscipy.calculators.ewald.calculator.Ewald

Bases: PairPotential

Ewal summation calculator.

Attributes:
alpha

Get alpha.

directory
label
short_range

Methods

allowed_wave_vectors(cell, km, a, nk)

Compute allowed wave vectors and the prefactor I

band_structure()

Create band-structure object for plotting.

calculate(atoms, properties, system_changes)

Compute Coulomb interactions with Ewald summation.

calculate_numerical_forces(atoms[, d])

Calculate numerical forces using finite difference.

calculate_numerical_stress(atoms[, d, voigt])

Calculate numerical stress using finite difference.

calculate_properties(atoms, properties)

This method is experimental; currently for internal use.

check_state(atoms[, tol])

Check for any system changes since last calculation.

determine_alpha(charge, acc, cutoff, cell)

Determine an estimate for alpha on the basis of the cell, cutoff and desired accuracy (Adopted from LAMMPS)

determine_kc(cell, nk)

Determine maximal wave vector based in a given integer triplet

determine_nk(charge, cell, acc, a, natoms)

Determine the maximal number of points in reciprocal space for each direction, and the cutoff in reciprocal space

first_derivative_kspace(charge, natoms, vol, ...)

Return the kspace part of the force.

get_birch_coefficients(atoms)

Compute the Birch coefficients (Effective elastic constants at non-zero stress).

get_born_elastic_constants(atoms)

Compute the Born elastic constants.

get_dynamical_matrix(atoms)

Compute dynamical matrix (=mass weighted Hessian).

get_elastic_constants(atoms[, cg_parameters])

Compute the elastic constants at zero temperature.

get_hessian(atoms[, format])

Compute the real space + kspace Hessian

get_magnetic_moments([atoms])

Calculate magnetic moments projected onto atoms.

get_non_affine_contribution_to_elastic_constants(atoms)

Compute the correction of non-affine displacements to the elasticity tensor.

get_nonaffine_forces(atoms)

Compute the non-affine forces which result from an affine deformation of atoms.

get_property(name[, atoms, allow_calculation])

Get the named property.

get_stress_contribution_to_elastic_constants(atoms)

Compute the correction to the elastic constants due to non-zero stress in the configuration.

get_stresses([atoms])

the calculator should return intensive stresses, i.e., such that stresses.sum(axis=0) == stress

kspace_energy(charge, pos, vol, I, k)

Return the energy from the reciprocal space contribution

kspace_properties(atoms[, prop, ...])

Calculate the recirprocal contributiom to the Hessian, the non-affine forces and the Born elastic constants

read(label)

Read atoms, parameters and calculated properties from output file.

reset()

Clear all information from old calculation.

reset_kspace(atoms)

Reset kspace setup.

rms_kspace(km, l, n, a, q2)

Compute the root mean square error of the force in reciprocal space

rms_rspace(charge, cell, a, rc)

Compute the root mean square error of the force in real space

self_energy(charge, a)

Return the self energy

set(**kwargs)

Set parameters like set(key1=value1, key2=value2, ...).

set_label(label)

Set label and convert label to directory and prefix.

stress_kspace(charge, pos, vol, a, I, k)

Return the stress contribution of the long-range Coulomb part.

calculation_required

export_properties

get_atoms

get_charges

get_default_parameters

get_dipole_moment

get_forces

get_magnetic_moment

get_potential_energies

get_potential_energy

get_stress

read_atoms

todict

name = 'Ewald'
default_parameters: Dict[str, Any] = {'accuracy': 1e-06, 'cutoff': 3, 'kspace': {}, 'verbose': True}

Default parameters

__init__()

Construct calculator.

property short_range
property alpha

Get alpha.

set(**kwargs)

Set parameters like set(key1=value1, key2=value2, …).

A dictionary containing the parameters that have been changed is returned.

Subclasses must implement a set() method that will look at the chaneged parameters and decide if a call to reset() is needed. If the changed parameters are harmless, like a change in verbosity, then there is no need to call reset().

The special keyword ‘parameters’ can be used to read parameters from a file.

reset()

Clear all information from old calculation.

static determine_alpha(charge, acc, cutoff, cell)

Determine an estimate for alpha on the basis of the cell, cutoff and desired accuracy (Adopted from LAMMPS)

static determine_nk(charge, cell, acc, a, natoms)

Determine the maximal number of points in reciprocal space for each direction, and the cutoff in reciprocal space

static determine_kc(cell, nk)

Determine maximal wave vector based in a given integer triplet

static rms_kspace(km, l, n, a, q2)

Compute the root mean square error of the force in reciprocal space

static rms_rspace(charge, cell, a, rc)

Compute the root mean square error of the force in real space

static allowed_wave_vectors(cell, km, a, nk)

Compute allowed wave vectors and the prefactor I

static self_energy(charge, a)

Return the self energy

static kspace_energy(charge, pos, vol, I, k)

Return the energy from the reciprocal space contribution

static first_derivative_kspace(charge, natoms, vol, pos, I, k)

Return the kspace part of the force.

static stress_kspace(charge, pos, vol, a, I, k)

Return the stress contribution of the long-range Coulomb part.

reset_kspace(atoms)

Reset kspace setup.

calculate(atoms, properties, system_changes)

Compute Coulomb interactions with Ewald summation.

kspace_properties(atoms, prop='Hessian', divide_by_masses=False)

Calculate the recirprocal contributiom to the Hessian, the non-affine forces and the Born elastic constants

Parameters:
  • atoms (ase.Atoms) – Atomic configuration in a local or global minima.

  • prop ("Hessian", "Born" or "Naforces") – Compute either the Hessian/Dynamical matrix, the Born constants or the non-affine forces.

  • divide_by_masses (bool) – if true return the dynamic matrix else Hessian matrix

  • Restrictions

  • ----------

  • systems (This method is currently only implemented for three dimensional)

get_hessian(atoms, format='')

Compute the real space + kspace Hessian

get_nonaffine_forces(atoms)

Compute the non-affine forces which result from an affine deformation of atoms.

Parameters:

atoms (ase.Atoms) – Atomic configuration in a local or global minima.

band_structure()

Create band-structure object for plotting.

calculate_numerical_forces(atoms, d=0.001)

Calculate numerical forces using finite difference.

All atoms will be displaced by +d and -d in all directions.

calculate_numerical_stress(atoms, d=1e-06, voigt=True)

Calculate numerical stress using finite difference.

calculate_properties(atoms, properties)

This method is experimental; currently for internal use.

calculation_required(atoms, properties)
check_state(atoms, tol=1e-15)

Check for any system changes since last calculation.

property directory: str
discard_results_on_any_change = False

Whether we purge the results following any change in the set() method.

export_properties()
get_atoms()
get_birch_coefficients(atoms)

Compute the Birch coefficients (Effective elastic constants at non-zero stress).

Parameters:

atoms (ase.Atoms) – Atomic configuration in a local or global minima.

get_born_elastic_constants(atoms)

Compute the Born elastic constants.

Parameters:

atoms (ase.Atoms) – Atomic configuration in a local or global minima.

get_charges(atoms=None)
get_default_parameters()
get_dipole_moment(atoms=None)
get_dynamical_matrix(atoms)

Compute dynamical matrix (=mass weighted Hessian).

get_elastic_constants(atoms, cg_parameters={'M': None, 'atol': 1e-05, 'callback': None, 'maxiter': None, 'rtol': 1e-05, 'x0': None})

Compute the elastic constants at zero temperature. These are sum of the born, the non-affine and the stress contribution.

Parameters:
  • atoms (ase.Atoms) – Atomic configuration in a local or global minima.

  • cg_parameters (dict) –

    Dictonary for the conjugate-gradient solver.

    x0: {array, matrix}

    Starting guess for the solution.

    rtol/atol: float, optional

    Tolerances for convergence, norm(residual) <= max(rtol*norm(b), atol).

    maxiter: int

    Maximum number of iterations. Iteration will stop after maxiter steps even if the specified tolerance has not been achieved.

    M: {sparse matrix, dense matrix, LinearOperator}

    Preconditioner for A.

    callback: function

    User-supplied function to call after each iteration.

get_forces(atoms=None)
get_magnetic_moment(atoms=None)
get_magnetic_moments(atoms=None)

Calculate magnetic moments projected onto atoms.

get_non_affine_contribution_to_elastic_constants(atoms, eigenvalues=None, eigenvectors=None, pc_parameters=None, cg_parameters={'M': None, 'atol': 1e-05, 'callback': None, 'maxiter': None, 'rtol': 1e-05, 'x0': None})

Compute the correction of non-affine displacements to the elasticity tensor. The computation of the occuring inverse of the Hessian matrix is bypassed by using a cg solver.

If eigenvalues and and eigenvectors are given the inverse of the Hessian can be easily computed.

Parameters:
  • atoms (ase.Atoms) – Atomic configuration in a local or global minima.

  • eigenvalues (array) – Eigenvalues in ascending order obtained by diagonalization of Hessian matrix. If given, use eigenvalues and eigenvectors to compute non-affine contribution.

  • eigenvectors (array) – Eigenvectors corresponding to eigenvalues.

  • cg_parameters (dict) –

    Dictonary for the conjugate-gradient solver.

    x0: {array, matrix}

    Starting guess for the solution.

    rtol/atol: float, optional

    Tolerances for convergence, norm(residual) <= max( rtol*norm(b), atol).

    maxiter: int

    Maximum number of iterations. Iteration will stop after maxiter steps even if the specified tolerance has not been achieved.

    M: {sparse matrix, dense matrix, LinearOperator}

    Preconditioner for A.

    callback: function

    User-supplied function to call after each iteration.

  • pc_parameters (dict) –

    Dictonary for the incomplete LU decomposition of the Hessian.

    A: array_like

    Sparse matrix to factorize.

    drop_tol: float

    Drop tolerance for an incomplete LU decomposition.

    fill_factor: float

    Specifies the fill ratio upper bound.

    drop_rule: str

    Comma-separated string of drop rules to use.

    permc_spec: str

    How to permute the columns of the matrix for sparsity.

    diag_pivot_thresh: float

    Threshold used for a diagonal entry to be an acceptable pivot.

    relax: int

    Expert option for customizing the degree of relaxing supernodes.

    panel_size: int

    Expert option for customizing the panel size.

    options: dict

    Dictionary containing additional expert options to SuperLU.

get_potential_energies(atoms=None)
get_potential_energy(atoms=None, force_consistent=False)
get_property(name, atoms=None, allow_calculation=True)

Get the named property.

get_stress(atoms=None)
get_stress_contribution_to_elastic_constants(atoms)

Compute the correction to the elastic constants due to non-zero stress in the configuration. Stress term results from working with the Cauchy stress.

Parameters:

atoms (ase.Atoms) – Atomic configuration in a local or global minima.

get_stresses(atoms=None)

the calculator should return intensive stresses, i.e., such that stresses.sum(axis=0) == stress

ignored_changes: Set[str] = {}

Properties of Atoms which we ignore for the purposes of cache

implemented_properties: List[str] = ['energy', 'free_energy', 'stress', 'forces', 'hessian', 'dynamical_matrix', 'nonaffine_forces', 'birch_coefficients', 'nonaffine_elastic_contribution', 'stress_elastic_contribution', 'born_constants', 'elastic_constants']

Properties calculator can handle (energy, forces, …)

property label
read(label)

Read atoms, parameters and calculated properties from output file.

Read result from self.label file. Raise ReadError if the file is not there. If the file is corrupted or contains an error message from the calculation, a ReadError should also be raised. In case of succes, these attributes must set:

atoms: Atoms object

The state of the atoms from last calculation.

parameters: Parameters object

The parameter dictionary.

results: dict

Calculated properties like energy and forces.

The FileIOCalculator.read() method will typically read atoms and parameters and get the results dict by calling the read_results() method.

classmethod read_atoms(restart, **kwargs)
set_label(label)

Set label and convert label to directory and prefix.

Examples:

  • label=’abc’: (directory=’.’, prefix=’abc’)

  • label=’dir1/abc’: (directory=’dir1’, prefix=’abc’)

  • label=None: (directory=’.’, prefix=None)

todict(skip_default=True)