matscipy.fracture_mechanics.crack
Functions
|
Convert from energy release rate G to strain for thin strip geometry |
|
|
|
|
|
Return actual displacement field minus ideal displacement field. |
|
|
|
Return actual displacement field minus ideal displacement field, divided by r**alpha. |
|
Find position of the tip from the atom coordination, i.e. broken bonds. |
|
Find position of tip in crack cluster from coordination |
|
Find the position of crack tip by fitting to the isotropic K-field stress |
|
Perform a least squares fit of near-tip stress field to isotropic solution |
|
Return the current energy release rate G for atoms |
|
Return the current strain on thin strip configuration atoms |
|
Compute stress intensity factor K_I |
Compute Irwin singular crack tip displacement field for mode II fracture. |
|
Compute Irwin singular crack tip displacement field for mode I fracture. |
|
Compute Irwin singular crack tip stress field for mode I fracture. |
|
|
Fit and plot atomistic and continuum stress fields |
|
Pretty printing of crack crystallographic coordinate system |
|
Convert from strain to energy release rate G for thin strip geometry |
|
Return vertical displacement ramp used to apply initial strain to slab |
Classes
|
Constraint which increments epsilon_yy at a constant strain rate |
|
Crack in a cubic crystal. |
|
Calculator to return Irwin near-tip stress field at atomic sites |
Near field solution for a crack in a rectilinear anisotropic elastic medium. |
|
|
Flexible boundary conditions for a Mode I crack as described in |
- matscipy.fracture_mechanics.crack.counted(f)
- class matscipy.fracture_mechanics.crack.RectilinearAnisotropicCrack
Bases:
object
Near field solution for a crack in a rectilinear anisotropic elastic medium. See: G. C. Sih, P. C. Paris and G. R. Irwin, Int. J. Frac. Mech. 1, 189 (1965)
Methods
deformation_gradient
(r, theta, kI[, kII])Deformation gradient tensor in mode I/II fracture.
displacements
(r, theta, kI[, kII])Displacement field in mode I/II fracture.
k1g
(surface_energy)K1G, Griffith critical stress intensity in mode I fracture
rtheta
(u, v, k)Invert displacement field in mode I fracture, i.e. compute r and theta from displacements.
stresses
(r, theta, kI[, kII])Stress field in mode I/II fracture.
k1gsqG
set_plane_strain
set_plane_stress
- __init__()
- set_plane_stress(a11, a22, a12, a16, a26, a66)
- set_plane_strain(b11, b22, b33, b12, b13, b23, b16, b26, b36, b66)
- displacements(r, theta, kI, kII=0.0)
Displacement field in mode I/II fracture. Positions are passed in cylinder coordinates.
- Parameters:
r (array_like) – Distances from the crack tip.
theta (array_like) – Angles with respect to the plane of the crack.
k (float) – Stress intensity factor.
- Returns:
u (array) – Displacements parallel to the plane of the crack.
v (array) – Displacements normal to the plane of the crack.
- deformation_gradient(r, theta, kI, kII=0.0)
Deformation gradient tensor in mode I/II fracture. Positions are passed in cyclinder coordinates.
- Parameters:
r (array_like) – Distances from the crack tip.
theta (array_like) – Angles with respect to the plane of the crack.
k (float) – Stress intensity factor.
- Returns:
du_dx (array) – Derivatives of displacements parallel to the plane within the plane.
du_dy (array) – Derivatives of displacements parallel to the plane perpendicular to the plane.
dv_dx (array) – Derivatives of displacements normal to the plane of the crack within the plane.
dv_dy (array) – Derivatives of displacements normal to the plane of the crack perpendicular to the plane.
- stresses(r, theta, kI, kII=0.0)
Stress field in mode I/II fracture. Positions are passed in cylinder coordinates.
- Parameters:
r (array_like) – Distances from the crack tip.
theta (array_like) – Angles with respect to the plane of the crack.
k (float) – Stress intensity factor.
- Returns:
sig_x (array) – Diagonal component of stress tensor parallel to the plane of the crack.
sig_y (array) – Diagonal component of stress tensor normal to the plane of the crack.
sig_xy (array) – Off-diagonal component of the stress tensor.
- rtheta(u, v, k)
Invert displacement field in mode I fracture, i.e. compute r and theta from displacements.
- k1g(surface_energy)
K1G, Griffith critical stress intensity in mode I fracture
- k1gsqG()
- matscipy.fracture_mechanics.crack.displacement_residuals(r0, crack, x, y, ref_x, ref_y, kI, kII=0, power=1)
Return actual displacement field minus ideal displacement field, divided by r**alpha.
- matscipy.fracture_mechanics.crack.displacement_residual(r0, crack, x, y, ref_x, ref_y, kI, kII=0, mask=None, power=1)
- matscipy.fracture_mechanics.crack.deformation_gradient_residuals(r0, crack, x, y, cur, ref_x, ref_y, ref, kI, cutoff, kII=0)
Return actual displacement field minus ideal displacement field.
- matscipy.fracture_mechanics.crack.deformation_gradient_residual(r0, crack, x, y, cur, ref_x, ref_y, ref, kI, cutoff, kII=0, mask=None)
- class matscipy.fracture_mechanics.crack.CubicCrystalCrack(crack_surface, crack_front, C11=None, C12=None, C44=None, stress_state='plane strain', C=None, Crot=None, cauchy_born=None)
Bases:
object
Crack in a cubic crystal.
Methods
crack_tip_position
(x, y, ref_x, ref_y, x0, ...)Return an estimate of the real crack tip position by minimizing the mean square error of the current configuration relative to the displacement field obtained for a stress intensity factor k from linear elastic fracture mechanics.
crack_tip_position_y
(x, y, ref_x, ref_y, x0, ...)Return an estimate of the y-coordinate of the real crack tip position assuming the stress intensity factor is k.
deformation_gradient
(ref_x, ref_y, x0, y0, kI)Deformation gradient for a list of cartesian positions.
Displacement field in mode I fracture from cartesian coordinates.
Displacement field in mode I fracture from cylindrical coordinates.
displacements
(ref_x, ref_y, x0, y0, kI[, kII])Displacement field for a list of cartesian positions.
Displacement field in mode I/II fracture from cartesian coordinates.
Displacement field in mode I/II fracture from cylindrical coordinates.
k1g
(surface_energy)Compute Griffith critical stress intensity in mode I fracture.
scale_displacements
(x, y, ref_x, ref_y, ...)Rescale atomic positions from stress intensity factor old_k to the new stress intensity factor new_k.
stresses
(ref_x, ref_y, x0, y0, kI[, kII])Stress field for a list of cartesian positions
stresses_from_cartesian_coordinates
(dx, dy, kI)Stress field in mode I fracture from cartesian coordinates
stresses_from_cylinder_coordinates
(r, theta, kI)Stress field in mode I fracture from cylindrical coordinates
k1gsqG
- __init__(crack_surface, crack_front, C11=None, C12=None, C44=None, stress_state='plane strain', C=None, Crot=None, cauchy_born=None)
Initialize a crack in a cubic crystal with elastic constants C11, C12 and C44 (or optionally a full 6x6 elastic constant matrix C). The crack surface is given by crack_surface, the cracks runs in the plane given by crack_front.
- k1g(surface_energy)
Compute Griffith critical stress intensity in mode I fracture.
- Parameters:
surface_energy (float) – Surface energy of the respective crystal surface.
- Returns:
k1g – Stress intensity factor.
- Return type:
float
- k1gsqG()
- displacements_from_cylinder_coordinates(r, theta, kI, kII=0)
Displacement field in mode I/II fracture from cylindrical coordinates.
- displacements_from_cartesian_coordinates(dx, dy, kI, kII=0)
Displacement field in mode I/II fracture from cartesian coordinates.
- displacements(ref_x, ref_y, x0, y0, kI, kII=0)
Displacement field for a list of cartesian positions.
- Parameters:
ref_x (array_like) – x-positions of the reference crystal.
ref_y (array_like) – y-positions of the reference crystal.
x0 (float) – x-coordinate of the crack tip.
y0 (float) – y-coordinate of the crack tip.
k (float) – Stress intensity factor.
- Returns:
ux (array_like) – x-displacements.
uy (array_like) – y-displacements.
- deformation_gradient_from_cylinder_coordinates(r, theta, kI, kII=0)
Displacement field in mode I fracture from cylindrical coordinates.
- deformation_gradient_from_cartesian_coordinates(dx, dy, kI, kII=0)
Displacement field in mode I fracture from cartesian coordinates.
- deformation_gradient(ref_x, ref_y, x0, y0, kI, kII=0)
Deformation gradient for a list of cartesian positions.
- Parameters:
ref_x (array_like) – x-positions of the reference crystal.
ref_y (array_like) – y-positions of the reference crystal.
x0 (float) – x-coordinate of the crack tip.
y0 (float) – y-coordinate of the crack tip.
k (float) – Stress intensity factor.
- Returns:
ux (array_like) – x-displacements.
uy (array_like) – y-displacements.
- crack_tip_position(x, y, ref_x, ref_y, x0, y0, kI, kII=0, mask=None, residual_func=<function displacement_residual>, method='Powell', return_residuals=False)
Return an estimate of the real crack tip position by minimizing the mean square error of the current configuration relative to the displacement field obtained for a stress intensity factor k from linear elastic fracture mechanics.
- Parameters:
x (array_like) – x-positions of the atomic system containing the crack.
y (array_like) – y-positions of the atomic system containing the crack.
ref_x (array_like) – x-positions of the reference crystal.
ref_y (array_like) – y-positions of the reference crystal.
x0 (float) – Initial guess for the x-coordinate of the crack tip.
y0 (float) – Initial guess for the y-coordinate of the crack tip.
k (float) – Stress intensity factor.
mask (array_like, optional) – Marks the atoms to use for this calculation.
residual_func (function) – Function returning per-atom residuals to be minimized.
method (str) – Optimization method. See method argument of scipy.optimize.minimize. Additionally, ‘leastsq’ invokes scipy.optimize.leastsq.
return_residuals (bool) – Function returns residuals if set to True.
- Returns:
x0 (float) – x-coordinate of the crack tip.
y0 (float) – y-coordinate of the crack tip.
residuals (array, optional) – Per-atom residuals at end of optimization.
- crack_tip_position_y(x, y, ref_x, ref_y, x0, y0, kI, kII=0, mask=None)
Return an estimate of the y-coordinate of the real crack tip position assuming the stress intensity factor is k.
- Parameters:
x (array_like) – x-positions of the atomic system containing the crack.
y (array_like) – y-positions of the atomic system containing the crack.
ref_x (array_like) – x-positions of the reference crystal.
ref_y (array_like) – y-positions of the reference crystal.
x0 (float) – Initial guess for the x-coordinate of the crack tip.
y0 (float) – Initial guess for the y-coordinate of the crack tip.
k (float) – Stress intensity factor.
mask (array_like, optional) – Marks the atoms to use for this calculation.
- Returns:
y0 – y-coordinate of the crack tip
- Return type:
float
- scale_displacements(x, y, ref_x, ref_y, old_k, new_k)
Rescale atomic positions from stress intensity factor old_k to the new stress intensity factor new_k. This is useful for extrapolation of relaxed positions. Note - this only works for pure mode I fracture
- Parameters:
x (array_like) – x-positions of the atomic system containing the crack.
y (array_like) – y-positions of the atomic system containing the crack.
ref_x (array_like) – x-positions of the reference crystal.
ref_y (array_like) – y-positions of the reference crystal.
old_k (float) – Current stress intensity factor.
new_k (float) – Stress intensity factor for the output positions.
- Returns:
x (array_like) – New x-positions of the atomic system containing the crack.
y (array_like) – New y-positions of the atomic system containing the crack.
- stresses_from_cylinder_coordinates(r, theta, kI, kII=0)
Stress field in mode I fracture from cylindrical coordinates
- stresses_from_cartesian_coordinates(dx, dy, kI, kII=0)
Stress field in mode I fracture from cartesian coordinates
- stresses(ref_x, ref_y, x0, y0, kI, kII=0)
Stress field for a list of cartesian positions
- Parameters:
ref_x (array_like) – x-positions of the reference crystal.
ref_y (array_like) – y-positions of the reference crystal.
x0 (float) – x-coordinate of the crack tip.
y0 (float) – y-coordinate of the crack tip.
k (float) – Stress intensity factor.
- Returns:
sig_x (array_like) – xx-component of the stress tensor
sig_y (array_like) – yy-component of the stress tensor
sig_xy (array_like) – xy-component of the stress tensor
- class matscipy.fracture_mechanics.crack.SinclairCrack(crk, cryst, calc, k, kI=None, kII=0, alpha=0.0, vacuum=6.0, variable_alpha=True, variable_k=False, alpha_scale=None, k_scale=None, extended_far_field=False, rI=0.0, rIII=0.0, cutoff=0.0, incl_rI_f_alpha=False, is_3D=False, theta_3D=0.0, cont_k='k1', precon_recompute_interval=10)
Bases:
object
Flexible boundary conditions for a Mode I crack as described in
- Sinclair, J. E. The Influence of the Interatomic Force Law and of Kinks on the
Propagation of Brittle Cracks. Philos. Mag. 31, 647–671 (1975)
- Attributes:
- k
Methods
strain_err
(cutoff[, seperate_surface])Function that returns the atomistic corrector strain error Dv for each atom using the norm of the difference between the corrector on each atom and all those around it within some cutoff.
u_cle
([alpha, kI, kII])Returns CLE displacement solution at current (alpha, K)
update_atoms
([use_alpha_3D])Update self.atoms from degrees of freedom (self.u, self.alpha, self.kI, self.kII)
animate
arc_length_continuation
convergence_line_plot
dfk_dk_approx
fit_cle
get_crack_tip_force
get_deformation_gradient
get_dofs
get_forces
get_k_force
get_potential_energy
get_precon
get_xdot
load_cb_model
optimize
pack
plot
rescale_k
save_cb_model
set_atoms
set_dofs
set_shiftmask
unpack
update_precon
write_atoms_to_file
- __init__(crk, cryst, calc, k, kI=None, kII=0, alpha=0.0, vacuum=6.0, variable_alpha=True, variable_k=False, alpha_scale=None, k_scale=None, extended_far_field=False, rI=0.0, rIII=0.0, cutoff=0.0, incl_rI_f_alpha=False, is_3D=False, theta_3D=0.0, cont_k='k1', precon_recompute_interval=10)
- Parameters:
CubicCrystalCrack (crk - instance of)
crystal (cryst - Atoms object representing undeformed)
calculator (calc - ASE-compatible)
kI) (k - stress intensity factor in mode I (deprecated name for)
I (rI - Size of region)
II (kII - stress intensity factor in mode)
position (alpha - crack tip)
cell (vacuum - amount of vacuum to add to unit)
True (extended_far_field - if)
BCs) (crack tip position can vary (flexible)
True – (needed for arc-length continuation)
vary (stress intensity factor can) – (needed for arc-length continuation)
True
contrib (crack tip force includes region III)
I
III (rIII - Size of region)
cutoff (cutoff - Potential)
forces (incl_rI_f_alpha - Whether to include region I when calculating the f_alpha)
preconditioner (precon_recompute_interval - How many preconditioned steps between re-computing the)
- property k
- pack(u, alpha, k)
- unpack(x, reshape=False, defaults=None)
- get_dofs()
- set_dofs(x)
- u_cle(alpha=None, kI=None, kII=None)
Returns CLE displacement solution at current (alpha, K)
Note that this is now pre-multipled by the stress intensity factor k
- fit_cle(r_fit=20.0, variable_alpha=True, variable_k=True, x0=None, grid=None)
- get_deformation_gradient(x, y, kI=None, kII=None, de=0)
- set_shiftmask(radial_dist)
- update_atoms(use_alpha_3D=False)
Update self.atoms from degrees of freedom (self.u, self.alpha, self.kI, self.kII)
- save_cb_model()
- load_cb_model()
- set_atoms(atoms)
- get_crack_tip_force(forces=None, mask=None, full_array_output=False)
- get_xdot(x1, x2, ds=None)
- get_k_force(x1, xdot1, ds)
- get_forces(x1=None, xdot1=None, ds=None, forces=None, mask=None)
- dfk_dk_approx(xdot1)
- update_precon(x, F=None)
- get_precon(x, F)
- optimize(ftol=0.001, steps=20, dump=False, args=None, precon=False, method='krylov', check_grad=True, dump_interval=10, verbose=0)
- get_potential_energy()
- rescale_k(new_kI)
- arc_length_continuation(x0, x1, N=10, ds=0.01, ftol=0.01, direction=1, max_steps=10, continuation=False, traj_file='x_traj.h5', traj_interval=1, otf_traj=False, precon=False, ds_max=inf, ds_min=0, ds_aggressiveness=2, opt_method='krylov', cos_alpha_min=0.9, parallel=False, pipe_output=None, data_queue=None, kill_confirm_queue=None, allow_alpha_backtracking=False, follow_G_contour=False)
- plot(ax=None, regions='1234', rzoom=inf, bonds=None, cutoff=2.8, tip=False, regions_styles=None, atoms_args=None, bonds_args=None, tip_args=None)
- animate(x, k1g, regions='12', rzoom=inf, cutoff=2.8, frames=None, callback=None, plot_tip=True, regions_styles=None, atoms_args=None, bonds_args=None, tip_args=None)
- write_atoms_to_file()
- strain_err(cutoff, seperate_surface=False)
Function that returns the atomistic corrector strain error Dv for each atom using the norm of the difference between the corrector on each atom and all those around it within some cutoff. Also has an option to return states adjacent to the free surface of the crack seperately for comparison.
- Parameters:
cutoff (float) – cutoff around each atom to use to find the strain error norm.
seperate_surface (bool) – whether or not to return the surface atoms in a seperate array.
- Returns:
r (array of atom radial distance from the centre of the crack system)
dv (norm strain error for each atom in r.)
- convergence_line_plot(num=0)
- matscipy.fracture_mechanics.crack.isotropic_modeI_crack_tip_stress_field(K, r, t, xy_only=True, nu=0.5, stress_state='plane strain')
Compute Irwin singular crack tip stress field for mode I fracture.
- Parameters:
K (float) – Mode I stress intensity factor. Units should match units of r.
r (array_like) – Radial distances from crack tip. Can be a multidimensional array to evaluate stress field on a grid.
t (array_like) – Angles from horzontal line y=0 ahead of crack tip, measured anticlockwise. Should have same shape as r.
xy_only (bool) – If True (default) only xx, yy, xy and yx components will be set.
nu (float) – Poisson ratio. Used only when
xy_only=False
, to determine zz stressesstress_state (str) – One of”plane stress” or “plane strain”. Used if xyz_only=False to determine zz stresses.
- Returns:
sigma
- Return type:
array with shape
r.shape + (3,3)
- matscipy.fracture_mechanics.crack.isotropic_modeI_crack_tip_displacement_field(K, G, nu, r, t, stress_state='plane strain')
Compute Irwin singular crack tip displacement field for mode I fracture.
- Parameters:
K (float) – Mode I stress intensity factor. Units should match units of G and r.
G (float) – Shear modulus. Units should match units of K and r.
nu (float) – Poisson ratio.
r (array_like) – Radial distances from crack tip. Can be a multidimensional array to evaluate stress field on a grid.
t (array_like) – Angles from horizontal line y=0 ahead of crack tip, measured anticlockwise. Should have same shape as r.
stress_state (str) – One of”plane stress” or “plane strain”. Used if xyz_only=False to determine zz stresses.
- Returns:
u (array)
v (array) – Displacements. Same shape as r and t.
- matscipy.fracture_mechanics.crack.isotropic_modeII_crack_tip_displacement_field(K, G, nu, r, t, stress_state='plane strain')
Compute Irwin singular crack tip displacement field for mode II fracture.
- Parameters:
K (float) – Mode I stress intensity factor. Units should match units of G and r.
G (float) – Shear modulus. Units should match units of K and r.
nu (float) – Poisson ratio.
r (array_like) – Radial distances from crack tip. Can be a multidimensional array to evaluate stress field on a grid.
t (array_like) – Angles from horizontal line y=0 ahead of crack tip, measured anticlockwise. Should have same shape as r.
stress_state (str) – One of”plane stress” or “plane strain”. Used if xyz_only=False to determine zz stresses.
- Returns:
u (array)
v (array) – Displacements. Same shape as r and t.
- class matscipy.fracture_mechanics.crack.IsotropicStressField(K=None, x0=None, y0=None, sxx0=0.0, syy0=0.0, sxy0=0.0, nu=0.5, stress_state='plane strain')
Bases:
object
Calculator to return Irwin near-tip stress field at atomic sites
Methods
get_stresses
- __init__(K=None, x0=None, y0=None, sxx0=0.0, syy0=0.0, sxy0=0.0, nu=0.5, stress_state='plane strain')
- get_stresses(atoms)
- matscipy.fracture_mechanics.crack.strain_to_G(strain, E, nu, orig_height)
Convert from strain to energy release rate G for thin strip geometry
- Parameters:
strain (float) – Dimensionless ratio
(current_height - orig_height)/orig_height
E (float) – Young’s modulus relevant for a pull in y direction sigma_yy/eps_yy
nu (float) – Poission ratio -eps_yy/eps_xx
orig_height (float) – Unstrained height of slab
- Returns:
G – Energy release rate in units consistent with input (i.e. in eV/A**2 if eV/A/fs units used)
- Return type:
float
- matscipy.fracture_mechanics.crack.G_to_strain(G, E, nu, orig_height)
Convert from energy release rate G to strain for thin strip geometry
- Parameters:
G (float) – Energy release rate in units consistent with E and orig_height
E (float) – Young’s modulus relevant for a pull in y direction sigma_yy/eps_yy
nu (float) – Poission ratio -eps_yy/eps_xx
orig_height (float) – Unstrained height of slab
- Returns:
strain – Dimensionless ratio
(current_height - orig_height)/orig_height
- Return type:
float
- matscipy.fracture_mechanics.crack.get_strain(atoms)
Return the current strain on thin strip configuration atoms
Requires unstrained height of slab to be stored as
OrigHeight
key inatoms.info
dictionary.Also updates value stored in
atoms.info
.
- matscipy.fracture_mechanics.crack.get_energy_release_rate(atoms)
Return the current energy release rate G for atoms
Result is computed assuming thin strip geometry, and using stored Young’s modulus and Poission ratio and original slab height from atoms.info dictionary.
Also updates G value stored in
atoms.info
dictionary.
- matscipy.fracture_mechanics.crack.get_stress_intensity_factor(atoms, stress_state='plane strain')
Compute stress intensity factor K_I
Calls
get_energy_release_rate()
to compute G, then uses stored YoungsModulus and PoissionRatio_yz values from atoms.info dictionary to compute K_I.Also updates value stored in
atoms.info
dictionary.
- matscipy.fracture_mechanics.crack.fit_crack_stress_field(atoms, r_range=(0.0, 50.0), initial_params=None, fix_params=None, sigma=None, avg_sigma=None, avg_decay=0.005, calc=None, verbose=False)
Perform a least squares fit of near-tip stress field to isotropic solution
Stresses on the atoms are fit to the Irwin K-field singular crack tip solution, allowing the crack position, stress intensity factor and far-field stress components to vary during the fit.
- Parameters:
atoms (
Atoms
object) –Crack system. For the initial fit, the following keys are used from the
info
dictionary:YoungsModulus
PossionRatio_yx
G
— current energy release ratestrain
— current applied strainCrackPos
— initial guess for crack tip position
The initial guesses for the stress intensity factor
K
and far-field stresssigma0
are computed fromYoungsModulus
,PoissonRatio_yx
,G
andstrain
, assuming plane strain in thin strip boundary conditions.On exit, new
K
,sigma0
andCrackPos
entries are set in theinfo
dictionary. These values are then used as starting guesses for subsequent fits.r_range (sequence of two floats, optional) – If present, restrict the stress fit to an annular region
r_range[0] <= r < r_range[1]
, centred on the previous crack position (from theCrackPos
entry inatoms.info
). If r_range isNone
, fit is carried out for all atoms.initial_params (dict) – Names and initial values of parameters. Missing initial values are guessed from Atoms object.
fix_params (dict) – Names and values of parameters to fix during the fit, e.g.
{y0: 0.0}
to constrain the fit to the line y=0sigma (None or array with shape (len(atoms), 3, 3)) – Explicitly provide the per-atom stresses. Avoids calling Atoms’ calculators
get_stresses()
method.avg_sigma (None or array with shape (len(atoms), 3, 3)) – If present, use this array to accumulate the time-averaged stress field. Useful when processing a trajectory.
avg_decay (real) – Factor by which average stress is attenuated at each step. Should be set to
dt/tau
wheredt
is MD time-step andtau
is a characteristic averaging time.calc (Calculator object, optional) –
If present, override the calculator used to compute stresses on the atoms. Default is
atoms.get_calculator
.To use the atom resolved stress tensor pass an instance of the
AtomResolvedStressField
class.verbose (bool, optional) – If set to True, print additional information about the fit.
- Returns:
params – Fitted parameters, in a form suitable for passing to
IsotropicStressField
constructor. These are the stress intensity factor K, the centre of the stress field(x0, y0)
, and the far field contribution to the stress(sxx0, syy0, sxy0)
.- Return type:
dict with keys
[K, x0, y0, sxx0, syy0, sxy0]
- matscipy.fracture_mechanics.crack.find_tip_coordination(a, bondlength=2.6, bulk_nn=4)
Find position of tip in crack cluster from coordination
- matscipy.fracture_mechanics.crack.find_tip_broken_bonds(atoms, cutoff, bulk_nn=4, boundary_thickness=None)
Find position of the tip from the atom coordination, i.e. broken bonds. Using the C implementation of ‘neighbour_list’. Returns the tip’s position in cartesian coordinates.
- Parameters:
atoms (ase.Atoms) – Atomic configuration.
cutoff (float) – Cutoff distance for neighbour search.
bulk_nn (integer) – Number of nearest neighbours for the standard bulk configuration.
boundary_buffer (float) – Thickness of the boundaries. Defaults to cutoff distance.
- Returns:
tip_position – The x and y values are found. The z value is calculated as the midpoint of the depth.
- Return type:
numpy array
- matscipy.fracture_mechanics.crack.find_tip_stress_field(atoms, r_range=None, initial_params=None, fix_params=None, sigma=None, avg_sigma=None, avg_decay=0.005, calc=None)
Find the position of crack tip by fitting to the isotropic K-field stress
Fit is carried out using
fit_crack_stress_field()
, and parameters have the same meaning as there.See also
- matscipy.fracture_mechanics.crack.plot_stress_fields(atoms, r_range=None, initial_params=None, fix_params=None, sigma=None, avg_sigma=None, avg_decay=0.005, calc=None)
Fit and plot atomistic and continuum stress fields
Firstly a fit to the Irwin K-field solution is carried out using
fit_crack_stress_field()
, and parameters have the same meaning as for that function. Then plots of the \(\sigma_{xx}\), \(\sigma_{yy}\), \(\sigma_{xy}\) fields are produced for atomistic and continuum cases, and for the residual error after fitting.
- matscipy.fracture_mechanics.crack.thin_strip_displacement_y(x, y, strain, a, b)
Return vertical displacement ramp used to apply initial strain to slab
Strain is increased from 0 to strain over distance \(a <= x <= b\). Region \(x < a\) is rigidly shifted up/down by
strain*height/2
.Here is an example of how to use this function on an artificial 2D square atomic lattice. The positions are plotted before (left) and after (right) applying the displacement, and the horizontal and vertical lines show the strain (red), a (green) and b (blue) parameters.
import matplotlib.pyplot as plt import numpy as np w = 1; h = 1; strain = 0.1; a = -0.5; b = 0.0 x = np.linspace(-w, w, 20) y = np.linspace(-h, h, 20) X, Y = np.meshgrid(x, y) u_y = thin_strip_displacement_y(X, Y, strain, a, b) for i, disp in enumerate([0, u_y]): plt.subplot(1,2,i+1) plt.scatter(X, Y + disp, c='k', s=5) for y in [-h, h]: plt.axhline(y, color='r', linewidth=2, linestyle='dashed') plt.axhline(y*(1+strain), color='r', linewidth=2) for x, c in zip([a, b], ['g', 'b']): plt.axvline(x, color=c, linewidth=2)
- Parameters:
x (array)
y (array) – Atomic positions in unstrained slab, centered on origin x=0,y=0
strain (float) – Far field strain to apply
a (float) – x coordinate for beginning of strain ramp
b (float) – x coordinate for end of strain ramp
- matscipy.fracture_mechanics.crack.print_crack_system(directions)
Pretty printing of crack crystallographic coordinate system
Specified by list of Miller indices for crack_direction (x), cleavage_plane (y) and crack_front (z), each of which should be a sequence of three floats
- class matscipy.fracture_mechanics.crack.ConstantStrainRate(orig_height, delta_strain, mask=None)
Bases:
object
Constraint which increments epsilon_yy at a constant strain rate
Rescaling is applied only to atoms where mask is True (default is all atoms)
Methods
apply_strain
(atoms[, rigid_constraints])Applies a constant strain to the system.
adjust_forces
adjust_positions
copy
- __init__(orig_height, delta_strain, mask=None)
- adjust_forces(atoms, forces)
- adjust_positions(atoms, newpos)
- copy()
- apply_strain(atoms, rigid_constraints=False)
Applies a constant strain to the system.
- Parameters:
atoms (ASE.atoms) – Atomic configuration.
rigid_constraints (boolean) – Apply (or not apply) strain to every atom. i.e. allow constrainted atoms to move during strain application