References

[Bernstein2009]

Bernstein, N., Kermode, J. R., & Csányi, G. Hybrid atomistic simulation methods for materials systems. Rep. Prog. Phys. 72(2), 026501 (2009).

[Buehler2006]

Buehler, M., Van Duin, A., & Goddard, W. (2006). Multiparadigm Modeling of Dynamical Crack Propagation in Silicon Using a Reactive Force Field. Phys. Rev. Lett., 96(9), 95505. (2006)

[Csanyi2004]

Csányi, G., Albaret, T., Payne, M., & De Vita, A. ‘Learn on the Fly’: A Hybrid Classical and Quantum-Mechanical Molecular Dynamics Simulation. Phys. Rev. Lett., 93(17), 175503. (2004)

[Csanyi2005]

Csányi, G., Albaret, T., Moras, G., Payne, M. C., & De Vita, A. Multiscale hybrid simulation methods for material systems. J. Phys.: Cond Mat. 17 R691-R703 (2005).

[DeVita1998]

De Vita, A., & Car, R. A novel scheme for accurate MD simulations of large systems. Mater. Res. Soc. Symp. Proc, 491, 473–480 (1998).

[Elstner1998]

Elstner, M., Porezag, D., Jungnickel, G., Elsner, J., Haugk, M., Frauenheim, T., Suhai, S., et al. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B. 58 7260 (1998).

[Fineberg1991]

Fineberg, J., Gross, S., Marder, M., & Swinney, H. Instability in dynamic fracture. Phys. Rev. Lett., 67(4), 457–460 (1991).

[FrenkelSmit2001]

Frenkel, D., & Smit, B. Understanding Molecular Simulation, Academic. (New York, 2001).

[Freund1998]

Freund, L. Dynamic fracture mechanics, Cambridge University Press (Cambridge, 1998)

[Irwin1948]

Irwin, G. R. Fracturing of Metals. (1948)

[Kermode2008]

Kermode, J. R., Albaret, T., Sherman, D., Bernstein, N., Gumbsch, P., Payne, M. C., Csányi, G., and A. De Vita. Low-speed fracture instabilities in a brittle crystal. Nature, 455, 1224–1227 (2008).

[Kermode2008a]

Kermode, J. R. Multiscale Hybrid Simulation of Brittle Fracture. PhD Thesis, University of Cambridge (2008).

[Lawn1993]

Lawn, B. R. Fracture of Brittle Solids — Second Edition (Cambridge Univ Pr, 1993)

[Li2003]

Li, J. AtomEye: an efficient atomistic configuration viewer. Modell. Simul. Mater. Sci. Eng. (2003). See also websites for original version, and modified version.

[Moras2010]

Moras, G., Choudhury, R., Kermode, J. R., Csányi, G., Payne, M. C., & De Vita, A. Hybrid Quantum/Classical Modeling of Material Systems: The Learn on the Fly Molecular Dynamics Scheme. In T. Dumitrica (Ed.), Trends in Computational Nanomechanics: Transcending Length and Time Scales (pp. 1–23). Springer (2010)

[Pizzagalli2013]

Pizzagalli, L., Godet, J., Guénolé, J., Brochard, S., Holmstrom, E., Nordlund, K., & Albaret, T. A new parametrization of the Stillinger-Weber potential for an improved description of defects and plasticity of silicon. J. Phys.: Cond. Mat. 25(5), 055801. (2013)

[Stillinger1985]

Stillinger, F. H., & Weber, T. A. Computer simulation of local order in condensed phases of silicon. Phys. Rev. B., 31(8), 5262–5271. (1985).

[Swadener2002]

Swadener, J. G., Baskes, M. I., & Nastasi, M. Molecular Dynamics Simulation of Brittle Fracture in Silicon. Phys. Rev. Lett. 89 085503 (2002).

[Vink2001]

Vink, R. L. C., Barkema, G. T., Van der Weg, W. F., & Mousseau, N. Fitting the Stillinger–Weber potential to amorphous silicon. J. Non. Cryst. Sol., 282(2-3), 248–255. (2001).

[Zimmerman2004]

Zimmerman, J. A., Webb, E. B., Hoyt, J. J., Jones, R. E., Klein, P. A., & Bammann, D. J. Calculation of stress in atomistic simulation. Modell. Simul. Mater. Sci. Eng. (2004).