References
Bernstein, N., Kermode, J. R., & Csányi, G. Hybrid atomistic simulation methods for materials systems. Rep. Prog. Phys. 72(2), 026501 (2009).
Buehler, M., Van Duin, A., & Goddard, W. (2006). Multiparadigm Modeling of Dynamical Crack Propagation in Silicon Using a Reactive Force Field. Phys. Rev. Lett., 96(9), 95505. (2006)
Csányi, G., Albaret, T., Payne, M., & De Vita, A. ‘Learn on the Fly’: A Hybrid Classical and Quantum-Mechanical Molecular Dynamics Simulation. Phys. Rev. Lett., 93(17), 175503. (2004)
Csányi, G., Albaret, T., Moras, G., Payne, M. C., & De Vita, A. Multiscale hybrid simulation methods for material systems. J. Phys.: Cond Mat. 17 R691-R703 (2005).
De Vita, A., & Car, R. A novel scheme for accurate MD simulations of large systems. Mater. Res. Soc. Symp. Proc, 491, 473–480 (1998).
Elstner, M., Porezag, D., Jungnickel, G., Elsner, J., Haugk, M., Frauenheim, T., Suhai, S., et al. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B. 58 7260 (1998).
Fineberg, J., Gross, S., Marder, M., & Swinney, H. Instability in dynamic fracture. Phys. Rev. Lett., 67(4), 457–460 (1991).
Frenkel, D., & Smit, B. Understanding Molecular Simulation, Academic. (New York, 2001).
Freund, L. Dynamic fracture mechanics, Cambridge University Press (Cambridge, 1998)
Griffith, A. A.The Phenomena of Rupture and Flow in Solids. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 221(582-593), 163–198. (1921)
Irwin, G. R. Fracturing of Metals. (1948)
Kermode, J. R., Albaret, T., Sherman, D., Bernstein, N., Gumbsch, P., Payne, M. C., Csányi, G., and A. De Vita. Low-speed fracture instabilities in a brittle crystal. Nature, 455, 1224–1227 (2008).
Kermode, J. R. Multiscale Hybrid Simulation of Brittle Fracture. PhD Thesis, University of Cambridge (2008).
Lawn, B. R. Fracture of Brittle Solids — Second Edition (Cambridge Univ Pr, 1993)
Li, J. AtomEye: an efficient atomistic configuration viewer. Modell. Simul. Mater. Sci. Eng. (2003). See also websites for original version, and modified version.
Moras, G., Choudhury, R., Kermode, J. R., Csányi, G., Payne, M. C., & De Vita, A. Hybrid Quantum/Classical Modeling of Material Systems: The Learn on the Fly Molecular Dynamics Scheme. In T. Dumitrica (Ed.), Trends in Computational Nanomechanics: Transcending Length and Time Scales (pp. 1–23). Springer (2010)
Pizzagalli, L., Godet, J., Guénolé, J., Brochard, S., Holmstrom, E., Nordlund, K., & Albaret, T. A new parametrization of the Stillinger-Weber potential for an improved description of defects and plasticity of silicon. J. Phys.: Cond. Mat. 25(5), 055801. (2013)
Stillinger, F. H., & Weber, T. A. Computer simulation of local order in condensed phases of silicon. Phys. Rev. B., 31(8), 5262–5271. (1985).
Swadener, J. G., Baskes, M. I., & Nastasi, M. Molecular Dynamics Simulation of Brittle Fracture in Silicon. Phys. Rev. Lett. 89 085503 (2002).
Vink, R. L. C., Barkema, G. T., Van der Weg, W. F., & Mousseau, N. Fitting the Stillinger–Weber potential to amorphous silicon. J. Non. Cryst. Sol., 282(2-3), 248–255. (2001).
Zimmerman, J. A., Webb, E. B., Hoyt, J. J., Jones, R. E., Klein, P. A., & Bammann, D. J. Calculation of stress in atomistic simulation. Modell. Simul. Mater. Sci. Eng. (2004).