wfl.fit.modify_database package#
Submodules#
wfl.fit.modify_database.gap_rss_set_config_sigmas_from_convex_hull module#
- wfl.fit.modify_database.gap_rss_set_config_sigmas_from_convex_hull.modify(configs, overall_error_scale_factor=1.0, field_error_scale_factors=None, property_prefix='REF_')#
- wfl.fit.modify_database.gap_rss_set_config_sigmas_from_convex_hull.piecewise_linear(x, vals)#
wfl.fit.modify_database.scale_orig module#
- wfl.fit.modify_database.scale_orig.modify(configs, default_factor=1.0, property_factors={}, config_type_exclude=[])#
wfl.fit.modify_database.simple_factor_nonperiodic module#
- wfl.fit.modify_database.simple_factor_nonperiodic.list_to_sigma_dict(sigma_values)#
- wfl.fit.modify_database.simple_factor_nonperiodic.modify(configs, overall_error_scale_factor=1.0, field_error_scale_factors=None, property_prefix='REF_')#
Modify the database (atoms objects) with a simple scaling of default_sigma values
- Parameters
configs (list(Atoms)) –
overall_error_scale_factor (float, default=1.0) –
field_error_scale_factors (dict) – this is a trick for now
property_prefix –
- wfl.fit.modify_database.simple_factor_nonperiodic.modify_cell(at: Atoms, extra_space=20.0)#
- wfl.fit.modify_database.simple_factor_nonperiodic.modify_with_factor(at, factor=1.0, energy_sigma=None, force_sigma=None, virial_sigma=None, hessian_sigma=None, property_prefix=None)#
Set the kernel regularisation values and remove results if given but not
- Parameters
at –
factor (float, default=1.0) –
energy_sigma –
force_sigma –
virial_sigma –
hessian_sigma –
property_prefix –
- Return type
None